Origin of Implication: How Do Innocent Individuals Enter the Criminal Justice System?

Belén Lowrey-Kinberg1, Samantha L. Senn2, Katherine Dunn2, Jon B. Gould2, and Katie Hail-Jares3

Abstract
Drawing from the investigative policing literature, we develop a typology for how innocent defendants become suspects in criminal investigations. We use the Preventing Wrongful Convictions Project (PWCP) dataset and multivariate modeling to examine the case and defendant characteristics that predict how an innocent defendant became a suspect. We found that investigators identify suspects in eight primary ways. The most common in the PWCP dataset were victim/eyewitness identification, citizen identification, and intentional misidentification. Defendant’s race, age, criminal history, relationship to the victim, cognitive/mental status, and whether the victim survived were strongly associated with an innocent defendant’s origin of implication. These results illuminate how tunnel vision begins in cases with innocent defendants, and how police practices may prevent innocent individuals from becoming suspects.

Keywords
police investigations, origin of implication, wrongful convictions

1St. Francis College, Brooklyn, NY, USA
2American University, Washington, DC, USA
3Griffith University, Queensland, Australia

Corresponding Author:
Belén Lowrey-Kinberg, Department of Sociology and Criminal Justice, St. Francis College, 182 Remsen Street, Brooklyn, NY 11201, USA.
Email: bvlowrey-kinberg@sfc.edu
Wrongful conviction research has primarily focused on the role of systemic factors following arrest; considerably less research, however, has examined how an innocent individual originally becomes a suspect. Why does an innocent person catch the attention of an officer on patrol? Why is an innocent suspect brought in for questioning? Why does a photo lineup include the picture of an innocent suspect? Determining how suspicion is cast on a person, a concept we have labeled *origin of implication*, has not been systematically addressed in the literature on wrongful convictions, yet could constitute a crucial first step in understanding the chain of events that lead to an erroneous conviction.

In examining this question, we use a subset of cases from the Preventing Wrongful Convictions Project (PWCP), a multiyear study funded by the National Institute of Justice (Gould, Carrano, Leo, & Hail-Jares, 2014). Using the cases in this dataset and drawing from police investigative theory and practice, we develop a model of origin of implication that details how innocent suspects first enter the criminal justice system. We find that a number of defendant characteristics, including race, age, relationship to the victim, and cognitive function, as well as whether the victim survived, were factors most strongly associated with whether an innocent suspect is ushered into the criminal justice system.

Background

Factors Associated With Wrongful Convictions

Eyewitness misidentifications, false confessions, tunnel vision, inadequate defense, forensic errors, prosecutorial misconduct, and informant testimony are all factors commonly found among wrongful convictions (Gould & Leo, 2010; Gross, 1998; Gross & O’Brien, 2008). These comprise the “familiar plot” of wrongful convictions (Leo, 2005, p. 207) and underpin the “innocence paradigm” (Zalman, 2011, p. 1500), a coherent narrative that distills the multifaceted factors that lead to wrongful convictions into a set of policy positions.

Despite the innocence paradigm’s prominence and utility, scholars have argued the need to move beyond this framework to implement meaningful criminal justice reform and promote the theoretical development of innocence scholarship (Leo, 2005; Zalman, 2011; Zalman & Larson, 2016). In addition, scholars note that the innocence paradigm was largely developed through legal case studies—not the use of comparison groups (Drizin & Leo, 2004; Gould et al., 2014; Huff, 2002). As such, the factors identified as “causes” of wrongful convictions may merely be correlates (Gould et al., 2014; Gould & Leo, 2010).
In response to these methodological concerns, Gould, Leo, and colleagues conducted the PWCP aimed at differentiating the sources of error that resulted in wrongful convictions from those that resulted in “near misses,” those cases in which a factually innocent defendant is indicted but has this mistake recognized prior to conviction, either through dismissal of charges or acquittal. In this comparison, only a few of the traditional “causes” distinguished wrongful convictions from the near misses. A panel of experts concluded that tunnel vision by criminal justice system actors was a primary underlying factor (Gould et al., 2014). Tunnel vision, the cognitive shortcuts that lead police investigators to “focus on a suspect . . . while ignoring or suppressing evidence that points away from guilt,” explained how innocent defendants were swept into the system (Martin, 2001, p. 848). As criminal justice actors invest more energy to prove a suspect guilty, they become increasingly committed to that narrative and may subsequently be unwilling to “process negative feedback that refutes their conclusions” (Gould et al., 2014, p. 504). Although tunnel vision is an important factor in understanding wrongful convictions (Findley & Scott, 2006; Martin, 2001), the process that leads to tunnel vision must have a point of origin.

Origin of Implication

Little is known about which factors originally draw the attention of the justice system toward an innocent person. As Zalman and Larson (2016) explain, wrongful conviction scholarship has largely “failed to view the entirety of the police investigation as a potential source of wrongful convictions” (p. 3), instead focusing on discreet police activities (e.g., handling of forensic evidence, eyewitness procedures, etc.). Nevertheless, initial suspicion, which we call **origin of implication**, has not been entirely neglected. An early attempt at addressing origin of implication can be found in Leo and Drizin’s (2010) work, in which they label the initial mistake in an investigation a **misclassification error**. These errors take place when “detectives erroneously decide that an innocent person is guilty” and are “the first and the most consequential error police will make” (Leo & Drizin, 2010, p. 13).

Zalman and Larson (2016) identify several ways in which misclassification errors may arise, including, for example, when an innocent person is chosen from a mug book by a victim. They note, however, that they are not aware of any research addressing this stage of a wrongful conviction, a gap in the literature recognized by Leo and Drizin (2010) as well. Finally, Zalman and Larson (2016) argue that the entire police investigation is a potential source of error that has been largely overlooked in wrongful conviction research. The present study focuses on the early stages of a police investigation to shed light on how tunnel vision begins.
Police Investigative Theory and Practice

Patterns and techniques in police investigative theory and practice can provide a basis for understanding how innocent suspects first become entangled in the criminal justice system. Taken as whole, the investigative literature points to several specific ways in which a person becomes a suspect. These methods of implication include victim or eyewitness identifications, law enforcement officer identification, citizen identification, physical evidence, criminal activity, physical proximity to the crime, social proximity to the victim, and intentional misidentification of suspects. Each category is described in detail below.

Prior to identifying a suspect, police investigators generate a set of suspects, gather information, use this to eliminate suspects, and continuously reevaluate their list (Innes, 2003; Simon, 2012). Once a suspect is identified, the focus of the investigation shifts from information gathering to case building (Fahsing & Ask, 2013; Innes, 2003; Stelfox & Pease, 2013). At this point, investigators become focused on collecting evidence to prove the suspect’s guilt and are less likely to credit evidence that challenges this assumption (Ask, Rebelius, & Granhag, 2008; Innes, 2003).

Unfortunately, no single overarching standard for criminal investigations exists for the entire United States; investigators operate autonomously across approximately 660 state and local law enforcement academies, each with different training curricula and guiding investigative principles (Reaves, 2016). There also has been little empirical research examining criminal investigative practices in the United States. Given this lack of consensus, Zalman (2014) recommends that researchers synthesize what is known regarding police investigations in the United States with the more robust work conducted in the United Kingdom.

For example, the British Murder Investigation Manual is widely cited for the Trace Interview Eliminate (TIE) method (Association of Chief Police Officers, 2006). The TIE method directs investigators to create categories of suspects “constructed around a group of people who share a common characteristic and which may also include the offender” (Association of Chief Police Officers, 2006, p. 251). Individuals are then added or eliminated, and the categories are refined. The Manual provides a set of factors used in constructing TIE categories, including individuals with access to the scene of the crime, individuals with familial or social relationships with the victim, individuals with a history of similar offenses, and individuals matching a given description. In addition, the Manual indicates that citizens can be important sources of information, suggesting that police release a description of the offender and other information about the crime as well as partner with an anonymous crime call line.
Studies in the United Kingdom have found that investigative practices closely mirror the TIE recommendations. A study of burglary and theft found that in 54% of cases, suspects were identified during the initial phases of investigation, including apprehending the offender during the commission of the crime and conducting victim or witness interviews. A quarter of the links were established through evidence discovered at the scene. The remaining links were established through intelligence efforts, including the use of informants, and unconnected police activity (Burrows et al., 2005). Similarly, as part of a larger study on rape cases, Feist, Ashe, Lawrence, McPhee, and Wilson (2007) identified seven ways in which suspects were first implicated: naming (67%) or description by the victim (6%), naming by an associate (4%), apprehension near the crime (3%), forensic matches (2%), admission by the perpetrator (1%), and similarities with previous offenses (1%).

These findings indicate general trends in origin of implication that are supported by mixed methods work on homicide by Innes (2003). Innes found that potential suspects were frequently identified shortly after the crime came to investigators’ attention. The identification source was typically a witness, but the suspect’s proximity to the scene near the time in question and the suspect’s “physical opportunity to commit the crime” (p. 199) were also factors. Cases in which suspects were not quickly identified required more extensive investigative work (e.g., comparing modus operandi between the unsolved case and known offenders).

Yet, these “links” are not infallible. Notably, victim and eyewitness statements are often unreliable (Simon, 2012; Wells & Olson, 2003). A great deal of research in this area has focused on “misinformation” (Innes, 2003, p. 128), or the distortion of memory following the introduction of misleading postevent information (see Loftus, 2005; Loftus & Loftus, 1980; Loftus, Miller, & Burns, 1978). Misinformation can potentially cause eyewitness reports to be biased (Zaragoza & McCloskey, 1989). Less discussed is the intentional misidentification of suspects by victims and witnesses, termed “disinformation” (Innes, 2003, p. 128). Investigators’ intentional or unintentional coercion of witnesses can lead to disinformation (Loney & Cutler, 2016), as can the use of informants (Gould & Leo, 2010; Natapoff, 2006). Finally, a highly controversial type of disinformation involves false rape allegations (Hail-Jares, Lowrey-Kinberg, Dunn, & Gould, in press; Kelly, Lovett, & Regan, 2005).³

The Present Study

The present study aims to determine how factually innocent defendants become suspects and the associated defendant and case characteristics. We draw from investigative policing literature in identifying a set of origin of
implication categories. We primarily based these categories on the TIE method, which lists offender description, social and geographic access to the victim, and offense history as bases for composing suspect lists. Furthermore, we also identified physical evidence (Feist et al., 2007) and “disinformation” (Innes, 2003, p. 128), or intentional misidentification, as separate methods by which a person can become a suspect.

In total, we identified eight mutually exclusive categories from the literature that encompass origin of implication. These categories are (a) victim and eyewitness identification, (b) officer identification, (c) citizen identification, (d) intentional misidentification, (e) physical evidence, (f) criminal activity, (g) physical proximity, and (h) social proximity. All categories are described in detail below, but it is important to note that the first three categories constitute instances of unintentional misidentifications (e.g., honest mistakes). This is in contrast to the category of intentional misidentification, which represents cases in which an innocent defendant was named as the perpetrator by a person who knew he or she was innocent.4 Intentional misidentification does not imply malicious intent and may, for example, include cases in which a suspect was pressured during interrogation to provide names of accomplices. Following the typing of the origins of implication, multivariate modeling was conducted to examine the association between each method of implication and defendant demographic and case factors.

Method

Data

The present study builds on the data collected in the PWCP conducted by Gould et al. (2014). Using a sample of 460 state violent felony cases occurring between 1980 and 2012, the researchers compared a total of 260 wrongful conviction cases (in which the defendant was exonerated based on factual innocence) with 200 near miss cases (in which the defendant was acquitted at trial or had the charges dismissed based on factual innocence). The original PWCP dataset did not systematically collect or code the origin of implication. However, many case records and other documents obtained for the project contained information on the police investigation. This was our first source for origin of implication in each case. When the origin was not available via these sources, we supplemented these existing data with information from defendants’ online profiles from The Innocence Project and the National Registry of Exonerations, as well as legal documents from civil suits and scholarly work on individual cases. If sufficient detail on origin of implication could not be obtained from these sources, we relied on contemporary news articles.
Although the original dataset contained 460 cases, a total of 64 were dropped in the final analysis. Due to the small number of female defendants ($n = 16$), we did not include these in the statistical analyses. In addition, male defendants who fell into the “other” ($n = 21$) and “unknown” ($n = 27$) categories for origin of implication (described in greater detail below) were excluded from analysis. This resulted in a total of 396 cases used in the analysis that follows. Of these, 231 were wrongful convictions, and 165 were near misses.

Coding Procedure

Based on our review of the investigative policing literature, we identified eight primary ways in which suspects may initially become implicated in a crime. These eight mutually exclusive categories are described in detail below. To assess our coding scheme, two independent raters were trained and provided a subsample of randomly selected cases. We then calculated Krippendorf’s alpha score to determine interrater reliability, which produced an acceptable rating ($\alpha = 0.81$) for a newly developed scale (Lacy & Riffe, 1996).

Variables

Origin of implication. Origin of implication consisted of the method by which defendants *first* became suspects in a criminal investigation and was coded as falling into one of eight mutually exclusive categories. Each of these eight categories was dummy coded ($1 = \text{yes}; 0 = \text{no}$). These dummy codes for each origin of implication serve as the dependent variables in the multivariate analyses. There were two additional categories that we identified—other and unknown—but did not use in the multivariate analyses.

Victim or eyewitness identification. A victim or eyewitness unintentionally erred in identifying the defendant as a suspect. The defendant was, therefore, incorrectly identified as the perpetrator by the victim or by an eyewitness, but this mistaken identification was *unintentional.* The investigative policing literature points to victim and eyewitness identification of suspects as an important source of suspect identifications (Burrows et al., 2005; Feist et al., 2007; Innes, 2003). This category is comprised of all identifications that were made based on the defendant’s physical appearance, including facial features, stature or build, markings (e.g., tattoos), and clothing. Identifications were most often made through the use of mug-book photos and direct naming as the perpetrator. Note that all identifications falling within this category are based on appearance, not the suspect’s behavior.
Officer identification. The defendant was mistakenly identified as the perpetrator by an on-duty member of law enforcement (e.g., police, security guards, parole officers) who recognized the physical description of the perpetrator. Burrows et al. (2005) found that suspects were identified by officers during “general patrol activities” (p. 45) in 12% of the cases they analyzed, suggesting that officer identification is one way in which defendants become suspects. Although these identifications provided by law enforcement personnel were mistaken, they were not intentionally in error. For example, this category would include cases of police canvassing the surrounding area of the crime scene and identifying a person who they believe matches the suspect’s physical description. As with victim/eyewitness identification (above), the suspect’s appearance, rather than behavior or location, is the basis for suspicion.

Civilian identification. The defendant was identified by a member of the public who was not a victim, eyewitness, or on-duty investigator. These identifications were incorrect, but could be considered “honest mistakes,” as the civilian providing the identification did not know that the defendant was innocent. The literature suggests that citizens may be the first to identify a suspect, for example, based on a description provided to the public by investigators (Association of Chief Police Officers, 2006), or in response to a composite sketch (Charman, Gregory, & Carlucci, 2009). This identification is not limited to a physical description and encompasses circumstances such as tips or other information spontaneously provided to police that first implicate a suspect.

Intentional misidentification. The defendant was intentionally misidentified as the perpetrator by the victim, a codefendant, a jailhouse snitch, a friend, a family member, an acquaintance, or another person. As previously discussed, individuals involved in the investigation may provide misleading information, making “disinformation” an issue that police must confront when investigating a crime (Innes, 2003, p. 128). Thus, the factor that distinguishes cases in this category from other forms of identification is that the person providing the identification knew that the suspect was innocent. This category includes cases in which a person maliciously implicated an innocent person in a crime, such as when a false rape allegation is made to exact revenge upon the suspect. In these cases, the intentionality of the false allegation was determined through various means, including “text messages establishing consent, alibi witnesses, physical evidence (such as photos) establishing the defendant’s alibi, and the victim’s recantation” (Hail-Jares, Lowrey-Kinberg, Dunn, & Gould, in press). However, malicious intent is not required for the origin of implication to be coded as intentional misidentification. For example, a suspect may implicate a friend under duress to escape an interrogation.
Physical evidence. The defendant was initially implicated as the perpetrator through physical evidence. The recovery of evidence is one of the ways that investigators identify suspects, with evidence including both forensic evidence and objects (Burrows et al., 2005; Feist et al., 2007). This category, therefore, includes forensic matches (e.g., DNA, hair, prints) as well as specific objects found in the suspect’s possession (e.g., objects taken from crime scene, discarded clothing). For a case to fall within this category, the physical evidence must be the reason the defendant first came under police scrutiny.

Criminal activity. The defendant’s involvement in criminal activity, both historically and contemporaneously, drew the attention of authorities and served as the primary reason that underpinned their suspicion of the defendant. When identifying suspects, the literature suggests that police investigators may investigate individuals who have previously been involved in similar criminal activity (Association of Chief Police Officers, 2006; Burrows et al., 2005). The primary consideration in this category is whether the actions of the defendant linked him or her to the crime, crime scene, a codefendant, or a victim. For example, this would include a case in which police apprehend a robbery suspect and, due to the similarities in the cases, connect him to a robbery committed a week before. Another example would be a case in which a detective involved in investigating a rape case years earlier noticed similarities between the two cases and began investigating the suspect in the old case.

Physical proximity. The defendant became a suspect due to his or her physical proximity to the crime, crime scene, evidence, codefendant, or victim, rather than the defendant’s appearance or actions. When the defendant’s location, or association with a location, is the factor that causes suspicion, a case is coded as physical proximity. Several studies of investigative policing practices have found that physical opportunity to commit the crime, as well as being in the vicinity of the crime, are factors police consider in composing suspect lists (Feist et al., 2007; Innes, 2003). The category of physical proximity encompasses cases in which a person became a suspect because he or she lived nearby, frequented the area, or had access to the scene of the crime (such as being the 911 caller). This is separate from police canvasing the area, in which officers identify potential suspects based on their appearance, rather than their location.

Social proximity. The defendant became a suspect due to social proximity to the victim, crime, crime scene, evidence, or codefendant. In the investigative policing literature, examining social connections is a primary way in which suspects are identified (e.g., Association of Chief Police Officers,
2006). For example, this category would encompass cases in which a parent became a suspect in a child’s death only because he or she was the parent, as well as cases in which a friend or family member became a suspect because of a recent fight with the victim.

Finally, some cases could not be placed into one of these eight categories. These were labeled other. The method of implication in these cases ranged from human error to the defendant acting out of the ordinary (e.g., unusually upset at the death of the victim), implicating themselves, or having a similar name to that of the real perpetrator. In addition, origin of implication could not be obtained for a number of cases, and these were, therefore, coded as unknown.11

Defendant and case characteristics. We expect that defendant demographic characteristics may play a role in the method through which a person became a suspect. These variables included age, gender, race, relationship to the victim, criminal history, and whether the defendant had cognitive or mental impairments. Defendant age and criminal history were found to be significant predictors of a wrongful conviction or a near miss in Gould et al. (2014), suggesting that they are important characteristics to include when examining miscarriages of justice. Defendants’ race, mental status, and relationship to the victim have been found to be significant in previous work using this dataset (Hail-Jares, Lowrey-Kinberg, Dunn, & Gould, in press). Finally, the literature suggests that interpersonal relationships are closely examined during criminal investigations (Association of Chief Police Officers, 2006).

The age variable was continuous and represented the defendant’s age at time of indictment. Race was coded as a dichotomous variable (White vs. non-White), as was the relationship to the victim (known vs. unknown to victim), criminal history (present vs. not present), and whether the defendant had a cognitive or mental impairment (present vs. not present). The presence of a surviving victim was also included in the analyses. A surviving victim likely affects the direction of the investigation and the composition of a suspect list. By definition, a surviving witness can provide police a description of a perpetrator, assisting law enforcement in a rape case, for example, whereas this would not be possible in a murder case (Gross, Jacoby, Matheson, & Montgomery, 2005). This difference is likely to impact the method of implication.

Statistical Analyses

We conducted frequency analyses on the origin of implication variable to determine how often each type of implication occurred in our dataset. We
also estimated eight multivariate logistic regression models—one for each origin of implication—to determine the demographic and case factors that predict how a defendant became a suspect. The dependent variables in our analyses are the eight dichotomized origin of implication categories. This analytical strategy allowed us to compare each origin of implication type against all others. Multicollinearity tests on all models were conducted and found to be in the acceptable range. The results of the multivariate logistic regressions are reported as odds ratios and interpreted in the section that follows. Results were also clustered by state to control for state-by-state differences in the legal system. All analyses were conducted in STATA 13.1.

The original dataset has missing data for several variables used in our analyses. Because listwise deletion might have biased the results, we used an imputed version of the dataset created for the original PWCP (Gould, Carrano, Leo, & Young, 2012). The imputation was accomplished using a chained imputation procedure (Gould et al., 2012; see also Azur, Stuart, Frangakis, & Leaf, 2011; Royston, 2004). To estimate the missing information, the data available for each variable were used in a series of regression equations. Ordinary least squares (OLS) regressions were conducted for continuous variables, and logit or probit models were used to estimate dichotomous variables. Additional information on the multiple imputation procedures used to generate the final dataset can be found in the appendix of the original report by Gould et al. (2012, pp. 404-410).

Results

Origin of Implication Frequencies

Victim or eyewitness identification was the most prevalent form of identification (24.24%), followed by intentional misidentification of the defendant (21.72%), citizen identification (13.13%), and officer identification (11.11%). The remaining defendants were implicated by physical (6.82%) or social proximity (8.84%) to the crime or victim, evidence linking the defendant to the crime or victim (7.32%), or criminal activity of the defendant (6.31%). These frequencies can be found in Table 1, below.

Which Characteristics Are Associated With Origin of Implication?

Multivariate logistic regression models were estimated to examine how defendant and case characteristics influenced the implication pathway.
Independent variables included age, race, criminal history, whether the defendant and the victim were the same race, whether the defendant had a cognitive impairment or mental disability, and whether the victim survived the crime. The results of the significant findings are discussed by model in Table 2, below.

Victim or eyewitness identification. Consistent with research that race is a confounding factor in eyewitness identifications, non-White defendants were almost three times more likely than White defendants to become suspects via victim/eyewitness identification (Odds Ratio [OR] = 2.93; \(p < .001; SE = 0.70 \)). When the victim survived the crime, the defendant was almost three times more likely to be identified via victim or eyewitness identification (OR = 2.49; \(p < .01; SE = 0.85 \)). This finding is in line with investigative policing literature that points to the importance of interviewing victims for information in identifying suspects (Burrows et al., 2005; Feist et al., 2007; Innes, 2003). Defendants with a cognitive or a mental impairment were less likely to first become suspects due to victim or eyewitness identification, likely because of the greater likelihood that these defendants became suspects via citizen identification (OR = 0.34; \(p < .05; SE = 0.17 \)).

Officer identification. When the victim survived the crime, the defendant was almost three times as likely to be identified by an officer (OR = 2.70; \(p < .01; SE = 0.80 \)). This is hardly surprising, as a surviving victim can provide a description of the perpetrator, while a deceased victim cannot. Furthermore, when the victim and the defendant knew each other, the defendant was significantly less likely to be identified by an officer or other criminal justice

Table 1. Descriptive Statistics—Frequencies Among Cases in the Sample.

<table>
<thead>
<tr>
<th>Origin of implication</th>
<th>Frequency</th>
<th>Percent of all defendants ((n = 396))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victim/eyewitness identification</td>
<td>96</td>
<td>24.24</td>
</tr>
<tr>
<td>Intentional misidentification</td>
<td>86</td>
<td>21.72</td>
</tr>
<tr>
<td>Civilian identification</td>
<td>52</td>
<td>13.13</td>
</tr>
<tr>
<td>Officer misidentification</td>
<td>44</td>
<td>11.11</td>
</tr>
<tr>
<td>Social proximity</td>
<td>35</td>
<td>8.84</td>
</tr>
<tr>
<td>Physical evidence</td>
<td>29</td>
<td>7.32</td>
</tr>
<tr>
<td>Physical proximity</td>
<td>27</td>
<td>6.82</td>
</tr>
<tr>
<td>Criminal activity</td>
<td>25</td>
<td>6.31</td>
</tr>
</tbody>
</table>

Note. All percentages rounded to two decimals.
<table>
<thead>
<tr>
<th></th>
<th>Victim/eyewitness ID</th>
<th>Officer ID</th>
<th>Citizen ID</th>
<th>Intentional misidentification</th>
<th>Physical evidence</th>
<th>Criminal activity</th>
<th>Social proximity</th>
<th>Physical proximity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defendant Age</td>
<td>0.99 (0.16)</td>
<td>1.00 (0.02)</td>
<td>1.02 (0.02)</td>
<td>0.96* (0.02)</td>
<td>0.99 (0.03)</td>
<td>1.05 (0.04)</td>
<td>1.04* (0.02)</td>
<td>1.02 (0.02)</td>
</tr>
<tr>
<td>Defendant Non-White</td>
<td>2.93*** (0.70)</td>
<td>1.13 (0.39)</td>
<td>2.07 (0.88)</td>
<td>0.45* (0.15)</td>
<td>1.11 (0.49)</td>
<td>0.61 (0.29)</td>
<td>0.49 (0.21)</td>
<td>0.71 (0.34)</td>
</tr>
<tr>
<td>Def. & Vic. Different Race</td>
<td>0.71 (0.22)</td>
<td>1.16 (0.33)</td>
<td>1.54 (0.58)</td>
<td>1.27 (0.41)</td>
<td>0.86 (0.29)</td>
<td>0.81 (0.34)</td>
<td>1.34 (0.55)</td>
<td>0.71 (0.40)</td>
</tr>
<tr>
<td>Prior Criminal History</td>
<td>1.39 (0.42)</td>
<td>0.78 (0.28)</td>
<td>1.04 (0.34)</td>
<td>0.86 (0.25)</td>
<td>0.75 (0.38)</td>
<td>2.13* (0.76)</td>
<td>0.66 (0.31)</td>
<td>0.95 (0.48)</td>
</tr>
<tr>
<td>Defendant knew victim</td>
<td>1.02 (0.26)</td>
<td>0.15*** (0.06)</td>
<td>0.8 (0.27)</td>
<td>1.48 (0.76)</td>
<td>0.84 (0.29)</td>
<td>0.04** (0.05)</td>
<td>11.65*** (6.34)</td>
<td>2.16 (1.18)</td>
</tr>
<tr>
<td>Defendant MR</td>
<td>0.34* (0.17)</td>
<td>0.83 (0.45)</td>
<td>2.37* (0.77)</td>
<td>0.38* (0.15)</td>
<td>1.40 (0.71)</td>
<td>2.73 (1.48)</td>
<td>1.00 (0.57)</td>
<td>1.00 (0.55)</td>
</tr>
<tr>
<td>Surviving victim</td>
<td>2.49** (0.85)</td>
<td>2.70** (0.80)</td>
<td>1.26 (0.43)</td>
<td>0.70 (0.29)</td>
<td>0.87 (0.39)</td>
<td>1.19 (0.55)</td>
<td>0.06*** (0.05)</td>
<td>0.59 (0.20)</td>
</tr>
<tr>
<td>N</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
</tr>
</tbody>
</table>

Note. Exponentiated coefficients; standard errors in parentheses; all estimates rounded to two decimal places. MR = has a cognitive impairment or intellectual disability.

*p < .05, **p < .01, ***p < .001.
practitioner (OR = 0.15; \(p < .001; SE = 0.06\)), presumably because of the much greater likelihood that familiarity between victim and defendant will cause a defendant to become implicated due to social proximity (discussed below).

Citizen identification. Defendants with a cognitive impairment or a mental disability were more than twice as likely to fall under suspicion due to citizen identification (OR = 2.37; \(p < .01; SE = 0.77\)), as compared to defendants without a cognitive or mental impairment. This may be a result of these defendants acting out of the ordinary (thereby being more memorable to citizens), or the tendency for those with mental illnesses to be viewed as suspicious or dangerous by the public (Feldman & Crandall, 2007; Link, Phelan, Bresnahan, Stueve, & Pescosolido, 1999).

Intentional misidentification. Non-White defendants were significantly less likely to be intentionally misidentified compared with White defendants (OR = 0.45; \(p < .05; SE = 0.15\)). Similar findings have been reported in a study using a subsample of this dataset (Hail-Jares, Lowrey-Kinberg, Dunn, & Gould, in press). The older a defendant was, the less likely he was to be intentionally misidentified as a suspect (OR = 0.96; \(p < .05; SE = 0.02\)). This result may reflect that young defendants are more likely to engage in risky behavior or associate with friends and romantic partners who would implicate them in criminal activity. Finally, defendants with a cognitive or mental disability were less likely than those without to be intentionally misidentified as suspects (OR = 0.38; \(p < .05; SE = 0.15\)).

Physical evidence and physical proximity. No case or defendant characteristics were statistically associated with a defendant becoming a suspect due to the recovery of physical evidence or via physical proximity to the crime.

Criminal activity. When the victim and the defendant knew each other, the defendant was significantly less likely to become a suspect due to the defendant’s criminal activity (OR = 0.04; \(p < .01; SE = 0.05\)). This is likely because in these cases, this relationship itself was often the basis for suspicion (discussed below). When there is no such relationship, investigators likely turn to other investigative techniques in generating a list of suspects. In addition, defendants who had a history of prior criminal activity were more than twice as likely to become suspects due to participation in criminal activity concurrent with or soon after the crime under investigation (OR = 2.13; \(p < .05; SE = 0.76\)), an intuitive finding that reflects investigators’ tendency to identify suspects based on local criminal activity (Association of Chief Police Officers, 2006; Innes, 2003).
Social proximity. When the defendant and the victim knew each other, this relationship itself was much more likely to be the defendants’ origin of implication (OR = 11.65; \(p < .001\), SE = 6.34). This finding reflects that defendants were more vulnerable to becoming suspects when they were related to or acquainted with the victim. Thus, in cases in which there was a social relationship between the defendant and victim (i.e., a family member or coworker), police suspicion was more likely to be based on this relationship, rather than another factor. Consistent with the investigative policing literature (Association of Chief Police Officers, 2006), these findings suggest that investigators likely place a great deal of weight on personal relationships in identifying suspects. If the case included a surviving victim, the defendant was significantly less likely to have been implicated due to social proximity (OR = 0.06; \(p < .001\); SE = 0.05). This finding may be due to the ability of surviving victims to rule out any suspects known to him or her. Conversely, a deceased victim cannot confirm that a family member, friend, or acquaintance was not involved in the crime. Finally, for every additional year of age, the defendant was more likely to become a suspect due to his relationship with the victim (OR = 1.04; \(p < .05\); SE = 0.02). This may reflect that young defendants are less likely than older defendants to be involved in social relationships, such as fatherhood or marriage, that may make them suspects.

Discussion

To our knowledge, this is the first study to examine how innocent people first become suspects in criminal investigations. We developed a typology for origin of implication consisting of eight ways in which suspicion is cast on an innocent suspect: (a) victim/eyewitness identification, (b) officer identification, (c) citizen identification, (d) intentional misidentification, (e) physical evidence, (f) criminal activity, (g) physical proximity, and (h) social proximity. Of these, the first four pathways, all based on unintentional or intentional misidentification, contributed to the largest number of innocent defendants entering the criminal justice system. Together, these categories explained how more than 60% of innocent defendants in our dataset were initially implicated.

While identifications accounted for a large proportion of initial implications, defendant and case characteristics could mitigate or strengthen the likelihood of an innocent defendant being mistakenly (or intentionally) identified as a suspect. Minority defendants were more likely than White defendants to become suspects from unintentional misidentification by a victim or an eyewitness. Conversely, White defendants were more likely than minority
defendants to become suspects because of intentional misidentification. Defendants with a cognitive or mental deficiency were more likely to become suspects due to citizen identification. We also found that when the victim and the defendant knew each other, this relationship was likely to be the basis for the police to focus on the defendant as a suspect. Finally, the presence of a surviving victim increased the rate of victim, eyewitness, and officer identifications of the suspect.

Our findings closely align with previous research in wrongful convictions more generally, including calls to reform identification procedures. Combined with the finding that more than 40% of our sample was originally identified via a form of unintentional misidentification, our results reinforce the need to introduce reforms that reduce biases in eyewitness identification procedures, such as the double-blind administration of photos (in which neither the witness nor the administering officer know who the suspects is), the use of sequential photo arrays, avoiding show-ups (identifications in which the witness is shown only one suspect and asked if he or she is the perpetrator), and requiring reasonable suspicion before placing a suspect in a lineup (Wells, 2006; Wells et al., 1998).

We found that White defendants were more likely than minority defendants to be intentionally implicated by a person who knew they were innocent. These cases encompass false rape allegations. Previous research using this dataset has also found that White men, in particular those who were well-educated and with no criminal history, were commonly defendants in false rape allegation cases (Hail-Jares, Lowrey-Kinberg, Dunn, & Gould, in press). This pattern may be due to the relative socioeconomic status of White defendants and purported victims’ lack of other means to punish defendants or retaliate against them (Hail-Jares, Lowrey-Kinberg, Dunn, & Gould, in press; Lowrey-Kinberg, Senn, Gould & Hail-Jares, in press).

Interestingly, minority defendants were no more likely than White defendants to be first identified as suspects by police or by citizens. There are several possible explanations for this finding. First, stressful events (such as witnessing a crime) can result in impaired memory for faces (Deffenbacher, Bornstein, Penrod, & McGorty, 2004). Thus, it is possible that police and citizens are more accurate in their identification of suspects, because they were not subject to the stressful event, than victims or eyewitnesses who themselves witnessed the crime. Second, officer and citizen identifications rely on a victim’s description. If both White and minority defendants were described in a similarly vague or nonexistent manner, it is possible that the effects of race on identifications would be negated. Nevertheless, this is a finding that should be studied in greater depth.
Approximately 11% of defendants in this sample originally became suspects due to officer identification. In these cases, officers recognized a description given by a victim or eyewitness, usually during routine police work. The person identified by the officer was subsequently questioned or placed into a lineup. This finding suggests officer identification training and accuracy may deserve additional research. Some research has focused on how officers compose lineups (e.g., Wogalter, Malpass, & Burger, 1993), but officers’ accuracy in matching victim descriptions to suspects remains a potential area for future study.

Our findings also provide evidence of the importance investigators place on personal relationships when attempting to identify suspects. When the defendant and victim knew each other, their social relationship was often found to be the basis for initial suspicion of a defendant’s involvement in the crime. This finding is significant primarily as it relates to the difficulty of overcoming tunnel vision in these cases. When the defendant and victim know each other, common motives—such as jealousy, a bad marriage, or revenge—may make it particularly hard for investigators to explore alternative suspects or contradictory evidence. Several researchers have pointed out that culturally based narratives of criminality can cause tunnel vision to take hold in cases with female defendants (Lewis & Sommervold, 2015; Webster & Miller, 2014). Others have found a similar pattern for male defendants who became suspects due to social proximity (Lowrey-Kinberg, Senn, Gould & Hail-Jares, in press).

One conclusion that can be tentatively drawn from our study is that, in the cases in our dataset, the criminal justice system actors did not appear to be acting maliciously in first implicating innocent people. In only three cases (less than 1% of defendants) in our dataset did police officers first cast blame on a person they knew was innocent. In all other cases in which law enforcement was involved in the initial identification of a suspect, the officers appear to have been following standard police procedure when they identified a suspect. This suggests that, although research has found that police misconduct in various forms is a correlate of wrongful convictions (e.g., Covey, 2012; Innocence Project, n.d.; The National Registry of Exonerations, 2018), in our dataset, this misconduct is not evident at the origin of implication, and appears to take place at a later point in the chain of events leading to a wrongful conviction. Our findings in this regard are similar to the conclusions reached by other wrongful conviction scholars. For example, Leo (2005) argues that

One of the most surprising . . . aspects of wrongful conviction is that each miscarriage of justice typically involves a series of actors whose decisions
were . . . made in the good faith belief that the suspect or defendant was guilty.
(Leo, 2005, p. 215)

Relatedly, Norris and Bonventre (2015) propose forced reaction theory to understand the complex factors that lead to a wrongful conviction. This theory is based on the idea that the actions of criminal justice actors are both rational and executed with a genuine interest in promoting societal well-being.

The present study has focused on the police investigation as a source of error, rather than the trial or other stages (Zalman & Larson, 2016). Implementing changes at this early stage in the chain of causation could help prevent tunnel vision in future phases of the criminal justice process. One tangible way in which this can potentially be accomplished is through the use of investigative checklists, similar to those used in medicine (Gawande & Lloyd, 2010). These checklists can help investigators break cognitive biases early in the investigative process and possibly prevent innocent individuals from becoming defendants in criminal cases (Findley & Scott, 2006; International Association of Chiefs of Police, 2013; Lowrey-Kinberg, Senn, Gould & Hail-Jares, in press).

Limitations and Future Directions

There are many avenues for future research based on the analysis presented here. First, it is important to note that because the cases in our sample constituted violent felonies, the method of investigation or implication may be different from other types of wrongful conviction cases, such as drug cases. Future research comparing the origin of implication of the defendants in our sample with those of a wider set of wrongful conviction cases (such as those listed in the National Registry of Exonerations) may prove insightful.

The origin of implication framework we propose may not be limited to innocent defendants, but may also be applied more generally to investigative policing theory and practice. Future studies might build upon this origin of implication framework to determine how a wider set of criminal cases is initially investigated. The factors present in the current sample of factually innocent defendants may also be evident across other cases, including those defendants who are factually guilty and convicted, as well as those who are factually guilty and acquitted. While the model presented in the current study may be applicable to a larger set of cases, additional research is needed to confirm its relevance.

Moreover, this study only examined factors antecedent to suspicion falling on an innocent defendant, yet origin of implication may itself predict case or trial factors. For example, it is possible that the way in which a defendant
became a suspect is correlated with the strength of prosecution or defense’s case, which in turn is correlated with whether a case results in a wrongful conviction or a near miss (Gould et al., 2014). In addition, in coding defendants’ criminal histories, we did not distinguish between different types of crimes, which could have influenced the police investigation and is a possibility that should be examined in future research. Finally, refinement of our proposed categories may be warranted. For example, we combined all cases of intentional misidentification, of which there are several possible subtypes (e.g., false rape accusations, implication under police pressure). We recommend that future research examine whether subtypes such as these make a substantive difference in the resulting police investigation. As a next step, a qualitative analysis of police files may be helpful. Such an analysis may shed light on the investigative dynamics leading to the initiation (and continuation) of suspicion of both guilty and innocent suspects.

In some cases, limited information made identifying the origin of implication challenging. As a result, we were unable to pinpoint a method of implication for 5.87% of cases of the original 460 in the PWCP. For other cases, there was conflicting information, and we erred on the side of caution in assigning a category when we were unsure. Furthermore, although the result of the interrater reliability test was acceptable, the fact that the agreement between raters was not higher reflects the challenges resulting from classifying these type of data. Finally, a limitation of the PWCP is that its cases are not a random sample of wrongful conviction and near miss cases and, instead, were collected based “on case solicitation and media searches” (Gould et al., 2014, p. 471).

An important area for future study concerns female defendants. The small number of female defendants in the dataset prevented a statistical analysis of the factors that bring female suspects to the attention of police. There is reason to believe that the wrongful convictions of female exonerees are systematically different from those of their male counterparts (Lewis & Sommervold, 2015; Webster & Miller, 2014). Future research should compile a dataset of female wrongful conviction and near misses to examine these factors.

Conclusion

Wrongful convictions scholarship has grown in recent years, yet the initiation of suspicion remains underexplored. Combining the wrongful conviction and investigative policing literature, this study has proposed eight categories for origin of implication and explored the defendant and case characteristics that predict how a defendant becomes a suspect. These results and this typology can be used as a basis in future wrongful conviction studies and their associated factors.
Appendix A

<table>
<thead>
<tr>
<th></th>
<th>Victim/eyewitness ID</th>
<th>Officer ID</th>
<th>Citizen ID</th>
<th>Intentional misidentification</th>
<th>Physical evidence</th>
<th>Criminal activity</th>
<th>Social proximity</th>
<th>Physical proximity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defendant Age</td>
<td>0.99 (0.02)</td>
<td>1.00 (0.02)</td>
<td>1.02 (0.02)</td>
<td>0.97* (0.02)</td>
<td>0.99 (0.03)</td>
<td>1.05 (0.04)</td>
<td>1.03* (0.02)</td>
<td>1.02 (0.02)</td>
</tr>
<tr>
<td>Defendant Non-White</td>
<td>3.45*** (0.94)</td>
<td>1.2 (0.45)</td>
<td>1.80 (0.83)</td>
<td>0.41*** (0.13)</td>
<td>1.00 (0.45)</td>
<td>0.75 (0.04)</td>
<td>0.54 (0.28)</td>
<td>0.66 (0.32)</td>
</tr>
<tr>
<td>Def. & Vic. Different Race</td>
<td>0.56 (0.19)</td>
<td>1.04 (0.35)</td>
<td>1.99 (0.76)</td>
<td>1.42 (0.47)</td>
<td>0.99 (0.39)</td>
<td>0.63 (0.28)</td>
<td>1.29 (0.57)</td>
<td>0.75 (0.43)</td>
</tr>
<tr>
<td>Victim White Female</td>
<td>1.43 (0.37)</td>
<td>1.18 (0.40)</td>
<td>0.62 (0.19)</td>
<td>0.75 (0.17)</td>
<td>0.76 (0.35)</td>
<td>1.62 (0.56)</td>
<td>1.23 (0.59)</td>
<td>0.83 (0.48)</td>
</tr>
<tr>
<td>Prior Criminal History</td>
<td>1.42 (0.43)</td>
<td>0.79 (0.28)</td>
<td>1.00 (0.31)</td>
<td>0.84 (0.25)</td>
<td>0.74 (0.38)</td>
<td>2.14* (0.75)</td>
<td>0.68 (0.31)</td>
<td>0.94 (0.47)</td>
</tr>
<tr>
<td>Defendant knew victim</td>
<td>1.02 (0.26)</td>
<td>0.15*** (0.06)</td>
<td>0.81 (0.27)</td>
<td>1.48 (0.75)</td>
<td>0.84 (0.29)</td>
<td>0.04** (0.04)</td>
<td>11.56*** (6.32)</td>
<td>2.16 (1.19)</td>
</tr>
<tr>
<td>Defendant MR</td>
<td>0.34* (0.17)</td>
<td>0.82 (0.44)</td>
<td>2.41** (0.80)</td>
<td>0.38** (0.15)</td>
<td>1.41 (0.72)</td>
<td>2.72 (1.44)</td>
<td>1.02 (0.59)</td>
<td>1.00 (0.55)</td>
</tr>
<tr>
<td>Surviving victim</td>
<td>2.44* (0.84)</td>
<td>2.63** (0.82)</td>
<td>1.35 (0.41)</td>
<td>0.71 (0.29)</td>
<td>0.89 (0.41)</td>
<td>1.13 (0.48)</td>
<td>0.6** (0.05)</td>
<td>0.59 (0.2)</td>
</tr>
</tbody>
</table>

N = 396

Note. Exponentiated coefficients; standard errors in parentheses; all estimates rounded to two decimal places. MR = has a cognitive impairment or intellectual disability.

*p < .05. **p < .01. ***p < .001.
Defendant and Case Characteristics of Cases With Known Origin Compared With Other and Unknown Origin.

<table>
<thead>
<tr>
<th>Variable</th>
<th>All cases (n = 396)</th>
<th>Known origin (n = 348)</th>
<th>Other or unknown origin (n = 48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race (% Non-White)</td>
<td>268 (60.36)</td>
<td>241 (60.88)</td>
<td>27 (56.10)</td>
</tr>
<tr>
<td>Juvenile defendant (% Yes)</td>
<td>47 (10.66)</td>
<td>41 (10.43)</td>
<td>6 (12.54)</td>
</tr>
<tr>
<td>Mental illness/difference (% Yes)</td>
<td>56 (12.73)</td>
<td>47 (11.98)</td>
<td>9 (18.82)**</td>
</tr>
<tr>
<td>Defendant known to victim (% Yes)</td>
<td>182 (40.99)</td>
<td>161 (40.68)</td>
<td>21 (43.55)</td>
</tr>
<tr>
<td>Prior criminal history (% Yes)</td>
<td>245 (56.86)</td>
<td>220 (57.24)</td>
<td>25 (53.74)</td>
</tr>
<tr>
<td>Living victim (% Yes)</td>
<td>233 (52.48)</td>
<td>213 (53.77)</td>
<td>20 (41.81)*****</td>
</tr>
<tr>
<td>Victim of different race (% Yes)</td>
<td>129 (29.05)</td>
<td>118 (29.79)</td>
<td>11 (23.00)**</td>
</tr>
</tbody>
</table>

* p < .05. ** p < .01. *** p < .001.

Acknowledgments

The authors would like to thank Loralys McDaniel for her help gathering and coding data and Erin M. Kearns for her comments on an earlier version of this manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Belén Lowrey-Kinberg https://orcid.org/0000-0003-4399-9080

Notes

1. Gould et al. found 10 factors to be significant: the defendant’s age and criminal history, forensic evidence error, state punitiveness, intentional eyewitness misidentification, prosecution case strength, Brady violations, perjury by a non-eye-witness, and defense case strength. Conversely, many other variables commonly
associated with wrongful convictions, including false confessions, snitch testimony, the defendant’s race, the victim’s race, and police error were not found to play a role in distinguishing wrongful convictions from near misses (Gould, Carrano, Leo, & Hail-Jares, 2014).

2. Note that the term *tunnel vision* is commonly used to refer to a set of cognitive biases that have been extensively studied in the psychology literature. Several researchers have applied these individual biases to understand how wrongful convictions come about (Findley & Scott, 2006; Lowrey-Kinberg, Senn, Gould & Hail-Jares, in press; Martin, 2001).

3. Methodological differences and definitions of false rape allegations have led past research to report that anywhere from 1.5% to 90% of rape claims are false (Lisak, Gardinier, Nicksa, & Cote, 2010; Rumney, 2006; Saunders, 2012). Recent research using more consistent methodology has found this figure to be 5% to 8% (Feist, Ashe, Lawrence, McPhee, & Wilson, 2007; Kelly, Lovett, & Regan, 2005; Saunders, 2012).

4. We were conservative in coding cases as intentional misidentifications. We only assigned a case to this category if it was clear that the person who identified the defendant as a suspect knew that the defendant was innocent.

5. See Appendix B for a comparison of case characteristics in our final dataset to the cases in the other and unknown categories.

6. While we acknowledge that it is possible that multiple forms of implication existed in each case, in the present article, we coded only the first way that a person was identified as a possible suspect. For example, a suspect in possession of keys to a building where the crime took place was subsequently brought in for a lineup and misidentified by a witness. Although both physical evidence (the keys) and eyewitness misidentification are present, it was the physical evidence that first caused him to become a suspect. Thus, for each defendant, we were careful to identify the first factor that led police to suspect a defendant. Coding the origin of implication, therefore, involved a careful review of the available information to determine the investigators’ process in identifying a defendant.

7. The subsample used to calculate interrater reliability consisted of 83 cases. This number was determined using calculations provided in Lacy and Riffe (1996).

8. A pilot test of the codebook yielded slight modifications to the coding scheme, after which coders were tested, and the intercoder reliability score was calculated.

9. These eight categories are described in greater detail in a separate article outlining qualitative themes within categories and case examples of each (Lowrey-Kinberg, Senn, Gould & Hail-Jares, in press).

10. We chose to combine these identifications into one category because both victims and eyewitnesses have firsthand knowledge of the perpetrator’s appearance. This direct knowledge sets these identifications apart from identifications made by officers or by civilians, as these latter identifications themselves rely on offender descriptions provided by the victim or eyewitnesses. Note also that lineups were rarely included in this category, as a person must first be a suspect to be placed in a lineup (McAllister, 2006).
11. If multiple factors were identified in a case and we could not determine the temporal order, we classified this case as “unknown.” In almost half the “unknown” cases, the available information indicated that the defendant was identified by a victim or witness in a lineup. However, we were unable to determine why these individuals became suspects, which is a precondition to being placed in a lineup (McAllister, 2006).

12. In addition to examining defendant characteristics, we also estimated a model that included victim characteristics (victim age and race). Victim characteristics were not statistically significant and were, therefore, not included in the final models, but are reported in Appendix A.

13. We used the “collin” tool to test for multicollinearity (Ender, n.d.).

14. Note, however, that this finding has been challenged by others in the literature (e.g., Christianson, Loftus, Hoffman, & Loftus, 1991; Safer, Christianson, Autry, & Österlund, 1998).

15. It is worth noting that there are cases in which the defendant and the victim were family or were acquainted, but the defendant became a suspect for a reason other than the social relationship. For example, one defendant in the dataset became a suspect because his fingerprints were found on the victim’s car. The defendant and the victim were acquainted, explaining the placement of the fingerprint on the car, yet the fingerprint (physical evidence) was the basis for suspicion. In several other examples, the defendant was a family member or friend of the victim, yet an intentional misidentification by the victim caused the police to investigate the defendant. Thus, although we find that the relationship between the defendant and the victim was often the basis for suspicion when they knew each other, it is important to note that there were other possible ways for defendants who knew the victim to become suspects.

References

Author Biographies

Belén Lowrey-Kinberg is an assistant professor of criminal justice at Saint Francis College in Brooklyn, New York. Her research focuses on the application of linguistics to the criminal justice system, including procedural justice, police–citizen interactions, and wrongful convictions.

Samantha L. Senn is a doctoral student in the Department of Justice, Law and Criminology at American University in Washington, D.C. Her research incorporates psychology to explore the process of criminal investigation, with specific focus on investigative failures and procedural justice.

Katherine Dunn is a PhD student in the Department of Justice, Law and Criminology at American University. Her research is primarily concerned with investigating the interface of psychology and the criminal justice system, with specific interests in jury decision-making and wrongful convictions.

Jon B. Gould is professor of public affairs and law at American University. The author of four books and more than 50 articles and reports, he has written on such subjects as erroneous convictions, judicial administration, indigent defense, police conformance with the Constitution, hate speech, and sexual harassment, among others.

Katie Hail-Jares is a postdoctoral fellow in epidemiological criminology at the Griffith Criminology Institute. She is the lead editor of *Challenging Perspectives on Street-Based Sex Work*, an edited volume that brings people impacted by sex work and researchers together in conversation. *Challenging Perspectives* was released June 2017 from Temple University Press.